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Motivation

* Magnetic reconnection 1s known for effective ¢
onversion of magnetic energy into particle ener

gy.

* Investigating mechanisms of this energy conve
rsion in MRX will improve understanding of
magnetic reconnection.



Magnetlc Reconnection Experlment




® ) PPPL
' How to Make the MRX plasma

' Unreconnected field lines

l'l’-.'hr ur.'_x:. - '
N ' Recoanected field lines
N

Flux cores

1) Gas is injected into the vacuum vessel.
2) Currents within the “flux cores” ionize plasma and drive reconnection

3) A current sheet develops at the midplane of the device.
4) Probes measure magnetic field, temperature, and density.



Flux Core -

Anatomy of a flux core:
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TF

PF produces magnetic field:




Flux Core (Cont’d) S)PPRL

TF produces electric field:
-creates plasma (good)
-drives a toroidal magnetic field (bad)

Anatomy of a flux core:
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Experimental Setup

Magnetic Probe Arrays
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* Helium discharge (4.5 mT — n_ < 1.4x10'%/cm?).

* 1. 1-4x103/cm? (upstream), 5-10x10'3/cm? (downstream) .
o T.5-12eV, T;: 5-14eV.

* Jon nertial length: ~9cm.

* Appre - -8 cm, 0p; 1 ~2cm.

V, : ~40km/s.



Collisionless Regime
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* The resistivity term only accounts for 10% of the reco

nnection electric field.

* Qutside of the electron diffusion region, (V xB) term
balances the reconnection electric field.



Diagnostics

* Magnetic probes

— 7 probes placed every 3cm along Z, 6mm maximum radial resolution.
* Langmuir probes.

* Mach probes.
— Calibrated by spectroscopic data.

* Floating potential probe array.

— 17 radial measurement points, 7mm maximum radial resolution.
* High frequency fluctuation probes.

— Fluctuations up to ~10MHz.

* Jon Dynamics Spectroscopy Probe (IDSP).
— 3 different types.
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Brief Information on IDSP
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ICCD camera.

— Two 1mages per discharge.
— 5.8 us gate time.

Spatial resolution: 3-4 cm.

He II line (~4685.7A) and
He 1 line (~4713.4A) are u
sed.

Both lines have fine struct
ure that should be consider

ed.



R-7Z Scan

6-7 different axial (Z) locations for each probe.

Langmuir probes, Mach probes — 1cm radial sc
an.

IDSP — 2cm radial scan.
Over 4200 total discharges.
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In-plane Potential Profile

Karimabadi ef al, 2007
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* A large bipolar electrostatic field (BEF)
exists in the reconnection layer due to tw
o-fluid effects.

* It can accelerate ions generating a pair of
counter-streaming 1on beams in the diffu
sion layer.

1000

0
x (km}
H+ inertial length

-1000

WYGANT ET AL.: ELECTRIC FIELDS AT THE RECONNECTION RE



Potential Well N
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* Magnitude of the potential well is determined by electron dynamics in the e
lectron diffusion region.

— This potential drop is conveyed along the magnetic field.
— Most of the potential drop occurs near separatrices.
* [t becomes wider downstream.
* It becomes deeper downstream.
— Electrons are turned toward the outflow direction.

— The Lorentz force creates further charge separation.



Ton Acgeleration

Ji-E at 330 us
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* Clear 10n acceleration by the in-plane electric field.

* Asymmetry in the 1on inflow 1s caused by asymmetry
in the upstream density.
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Asymmetric Upstream Density
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* The outboard side (larger R) has higher density.

* During the quasi-steady period, this asymmetry is re
duced.



A Comparison to Electron Flow
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A Why not Alfvénic Outflow?
* The maximum 10on outflow 1s only 16 km/s, which 1s
0.4V,.

* The potential drop across the boundary layer 1s more t
han 30V such that i1t can accelerate ions up to V.

* High downstream pressure and drag by neutrals are th
e two main causes of this sub-Alfvénic 1on outflow.

— Ion flow energy increase: 5eV
— Frictional drag by neutrals: 12eV
— High downstream pressure: 10~12¢V.
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Electron Dynamics Controls Potential

* At Z =0, assuming an isotropic pr
essure tensor,
Ep ~-(Vey~ (VS)y By,
where (V."), = -(1/enB,)dp /0R.

* At R=37.5 (current sheet location)
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where (V.™), = -(1/en Bg)op, /0Z.
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Z(m — The radial profile 1s consistent.

— The axial profile has larger me
asured values.



<¥> Magnitude of Potential Well
 If there 1s no contribution from the diamagnetic drift, the maxi
mum potential drop across the layer at Z=01s V_ ., ~ p,/en..=
T.(eV)/B..
— Collisionless limit.
— In the collisional limit as in the SP model, there 1s no potential well.

* If there 1s a peak 1n the electron pressure at the center of the la
yer, the magnitude decreases as V; ~ A(p,, T p.)/en..
— This 1s the case for MRX.
— Indicates the potential well is related to 10n pressure increase at the cent
er : Ap; ~-en,V

well®

— Energy conversion process depends on f3..
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Ion Temperature Profile
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* Opverall ion heating during the pull reconnection period.
* However, no strong ion heating is observed at the center.
* Problem in measurement?
* Asymmetric upstream density?
* Jons are cooled where they are accelerated.



Neutral Temperature
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* The neutral temperature profile 1s qualitatively similar to that
of 1ons.
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— Indicates ion energy loss to neutrals.
— Neutral drift velocity is negligible — not strongly coupled.

* Jon-neutral collision (charge exchange) frequency 1s ~20MHz



Electron Heating
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* The electron temperature profile agrees with fast camera ima
ges.
— Sharp increase across the boundary.
— Brighter regions indicate higher electron temperature.
— Inboard side has higher electron temperature.



Y~ Ohmic Heating or Wave-particle Interaction?
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* Is Ohmic heating power enough to explain the observed elect
ron heating?
* More calculation will be conducted to estimate the contribution from
Ohmic heating.
* Possible heating by wave-particle interactions indicated by t
he high-frequency fluctuation measurements.
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Electron Energy Gain
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* Electron energy gain is locali
zed around the X point. (Elec
tron diffusion region.)
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Summary

* The in-plane potential profile 1s measured.
— The radial potential well becomes wider and deeper downstream.
— lons are accelerated by the in-plane electric field.

— The magnitude 1s related to the dip of the sum of magnetic and electric
pressure V., ~ A(p,, T p.)/en..

— It indicates an increase in the 1on pressure.

* lon temperature increases during the pull reconnection period.
— No 10n heating around the X-point.
— Jon temperature decreases where strong acceleration exists.

— Neutral temperature profile shows there 1s some coupling between ions
and neutrals by charge exchange collisions.

* Electron temperature sharply rises inside of the separatrix.
— Ohmic heating — how much contribution?

— Possible contribution from heating by high-frequency fluctuations.



