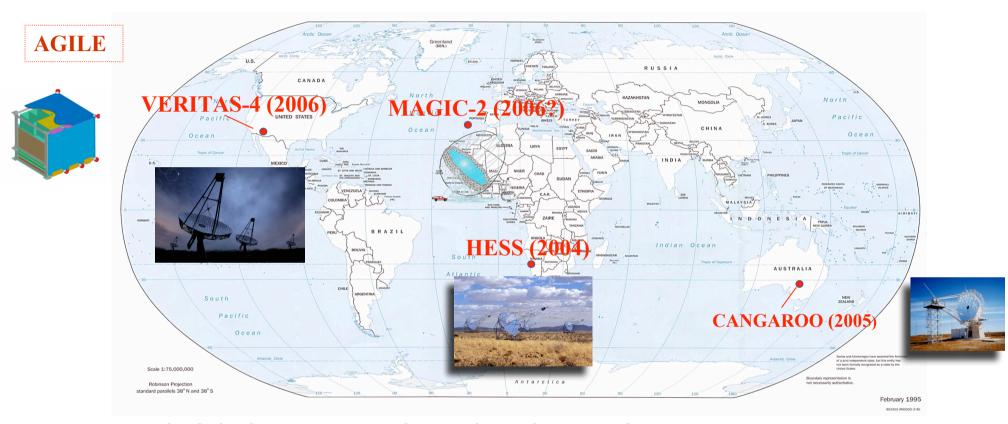


Prospects with VERITAS

Galactic sources and cosmic ray accelerators

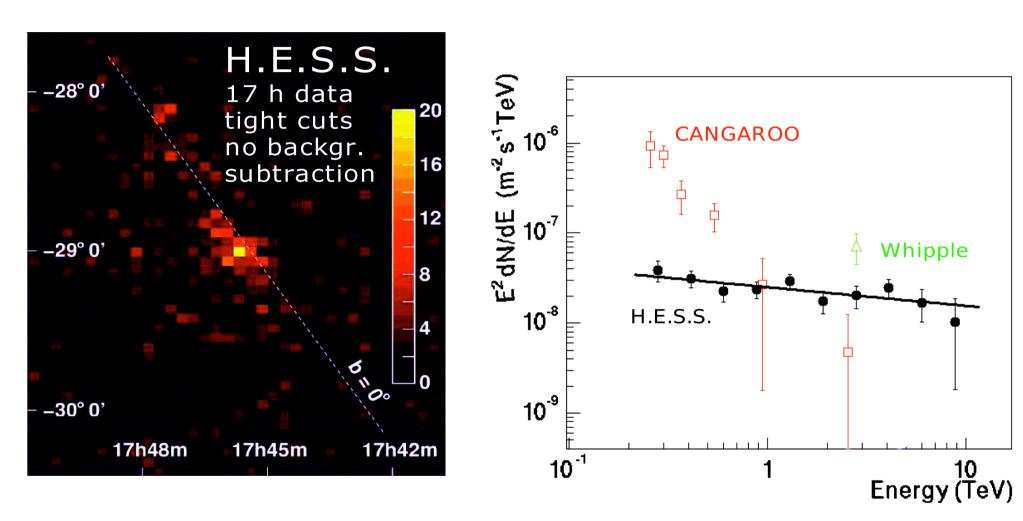
Joachim Rose University of Leeds

VERITAS collaboration http://veritas.sao.arizona.edu


OUTLINE

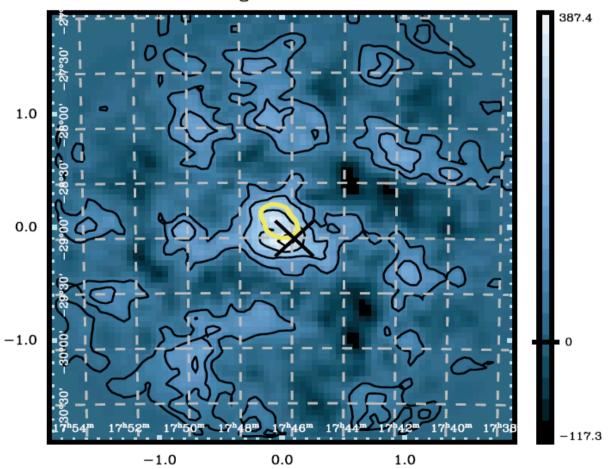
- Introduction: C₄H₄M²V⁴
- Galactic Centre
- Binary pulsars
- Supernova Remnants
- TeV unidentified sources
- Galactic sky surveys
- Summary

High energy gamma-ray telescopes



- Good global coverage latitude & longitude.
- High flux sensitivity around 100 GeV

Galactic centre

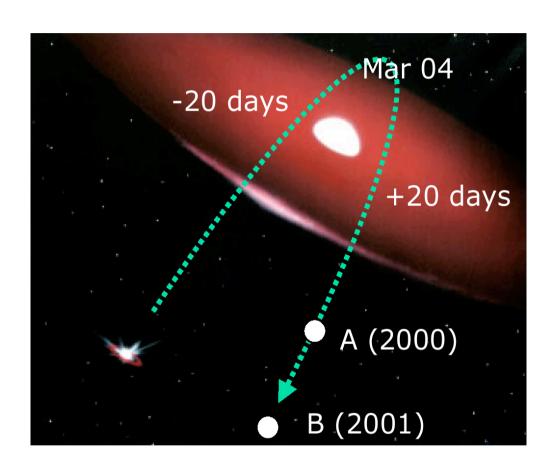


C Masterson (HESS), DPF 2004

Galactic Centre

K. Kosack et al. (VERITAS), ApJ, 2004

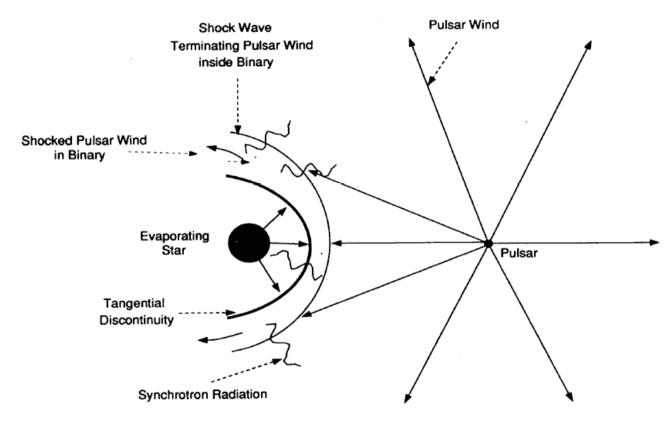
Whipple 10 m telescope
26 hours, 1995 to 2003
Significance of 3.7 sigma
Energy above 2.8 TeV


Large zenith angle leads to high energy threshold:

Future opportunity to measure the spectrum far beyond 10 TeV?

Spectrum endpoint at neutralino mass?

Binary pulsars


Southern hemisphere detection of PSR1259-63 at TeV energies (HESS, 2004)

A new class of high energy gamma ray source.

Any Northern hemisphere candidates?

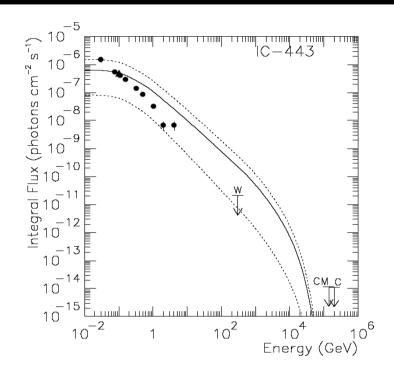
Northern hemisphere binary pulsar targets

Whipple telescope observations

Hall et al (VERITAS), ApJ, 2003

PSR1959 observations

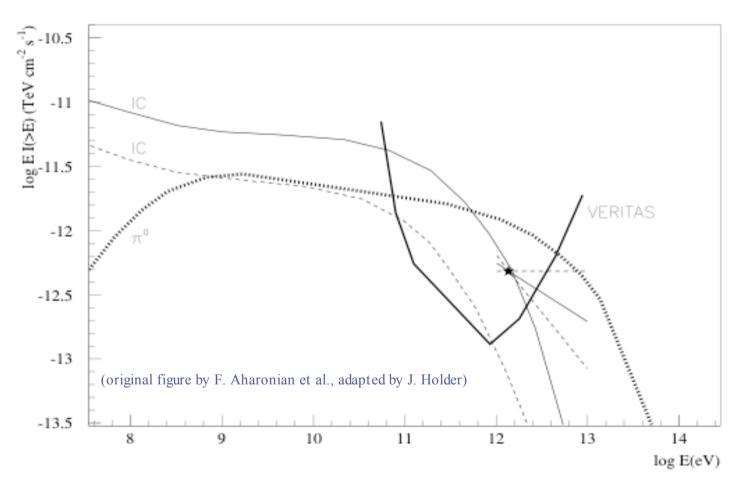
Whipple 10 m telescope
11.4 hrs up to 2004
More time approved for 2005


LSI+61303 observations

Whipple 10 m telescope
Awarded 50 hours
Observations in progress

PSR1957+20, Arons and Tavani, 1993

Supernova remnants


Whipple telescope upper limits in Buckley et al, Astron. Astrophys. 1998

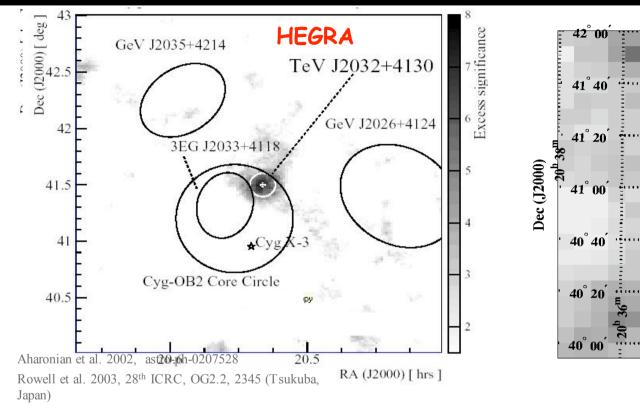
Search for the source of cosmic rays: Many upper limits, but no smoking gun!

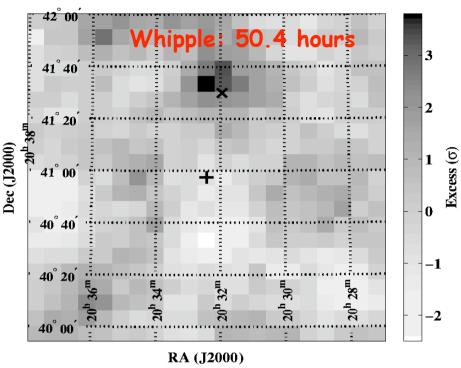
			Aperture	ON-Source	OFF-Source	Total	Effective	Upper
Object	Pointing Direction		Radius	Counts	Counts	Time	Area	Limit
Name	$\alpha(1950)$	$\delta(1950)$	(deg)			(min)	(10^8cm^2)	$(10^{-11} \text{cm}^{-2} \text{s}^{-1})$
Tycho	$00^{h}22^{m}30$	+63°52′23	0.29	315	302	867.2	2.1	0.8
IC443	06 14 00	+22 30 00	0.64	715	654	413.0	1.7	4.2
	06 12 43	+22 19 12	0.64	850	868	663.7	1.6	1.9
	total:		0.64	1565	1522	1076.7		2.1
W44	18 53 29	+01 14 57	0.55	450	426	360.1	1.8	3.0
W51	19 20 00	+14 00 00	0.68	361	294	168.0	1.5	9.6
	19 21 30	+14 00 00	0.68	258	265	300.0	1.7	2.3
	total:		0.68	619	559	468.0		3.6
γ-Cygni	20 18 59	+40 15 17	0.76	382	395	252.0	1.6	3.4
	20 20 08	+39 40 36	0.76	319	347	168.0	1.3	5.0
	20 20 00	+40 02 00	0.76	339	362	140.0	1.5	5.6
	tot	al:	0.76	1040	1104	560.0		2.2
W63	20 15 15	+45 24 36	1.05	452	501	140.0	1.3	6.4

Cas A: High energy gamma-ray observations

HEGRA detection (tbc) and models for Cas A.

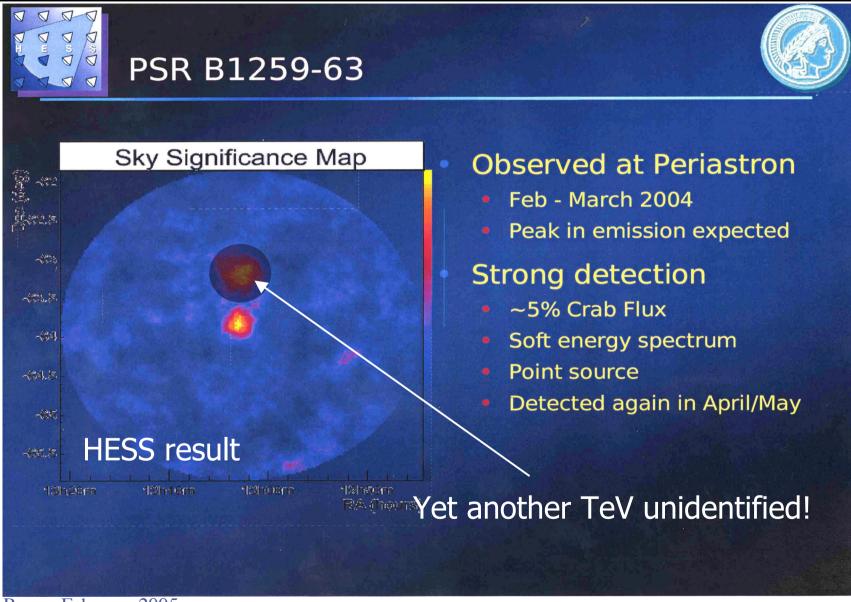
Dotted line: predicted **hadronic** emission.


Solid and dashed lines: range of **leptonic** models.


Thick curve: VERITAS **sensitivity** for a 50 hour observation.

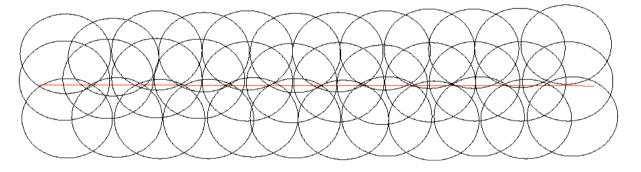
Need both VERITAS angular resolution and good energy reconstruction to resolve details.

TeV Unidentified Source



- \bullet Region nearby Cygnus X3 and GeV J2032+4214 shows a 4.6 σ excess
- Confirmed by 2002 observations \rightarrow 7 σ detection
- 3% of Crab flux
- coincident with OB association OB Cyg OB2
- search for emission in Whipple 1989/90 archive data \rightarrow 3.5 σ

Serendipitous sources



Veritas4 capabilities

- sensitivity:2% Crab, 5 h, 3σ
- FOV: 3.5 5deg.
 sensitive
 to outside camera
 due to stereo
 reconstruction

galactic plane

- Anticenter, Crab region: I=165-195
- Cygnus region: I=100-150
- parallel plane: I=50-80

Summary:

- VERITAS first light in 2006
- TeV gamma rays are becoming relevant to a variety of different types of objects
- · Northern hemisphere sources to be discovered
- Astrophysics needs multi-wavelength approach

THE END

VERITAS multi-wavelength observations

Joachim Rose University of Leeds

VERITAS collaboration http://veritas.sao.arizona.edu

See VERITAS pages at

http://jelley.wustl.edu/multiwave

Information about:

- (a) VERITAS contact persons,
- (b) past and future multi-wavelength campaigns,
- (c) the VERITAS experiment and its sensitivity,
- (d) policies for guest investigators.

Observing time interval calculator tool.

Sign up to receive VERITAS multi-wavelength alert emails.

Transients and alerts

VERITAS strategy:

- Monitor established sources and candidates
- Pre-approved time to react to
 - VERITAS alerts
 - community alerts, e.g. RXTE ASM, optical, SWIFT
- Near real-time gamma-ray rapid data analysis
- If VERITAS detects a gamma-ray flare:
 - invoke campaign
 - send e-mail alerts.

Multi-wavelength collaboratior

Alternative:

Individual VERITAS members* can apply to other projects as co-investigators.

VERITAS is open to such collaborations.

Publications:

Unpublished VERITAS data: include entire VERITAS collaboration as co-authors.

Negotiate specifics on a case to case basis.